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Abstract

Rhythm analysis is crucial during cardiopulmonary re-
suscitation (CPR) in order to make decisions about ther-
apy. Nowadays, chest compressions (basic treatment for
cardiac arrest) must be stopped for reliable rhythm analy-
sis, because of the artefact they induce in the ECG signal,
jeopardizing the favorable outcome of the patient. In this
work, a method to discriminate between asystole (AS), or-
ganized (OR) and shockable (Sh) rhythms is proposed dur-
ing ongoing mechanical chest compressions using Load
Distributed Band (LDB, Autopulse) device during out-of-
hospital cardiac arrest. The artefact was reduced using an
adaptive filter, 83 features were extracted based on station-
ary wavelet transform and a random forest classifier was
applied. The unweighted mean of sensitivities in the 10-
fold cross-validation was 84.3% and mean F1-score was
83.4%. Besides, the algorithm met American Heart As-
sociation requirements, with a sensitivity of 91.0% and a
specificity of 97.2% for Sh class.

1. Introduction

Current cardiopulmonary resuscitation (CPR) guide-
lines identify early defibrillation and high quality CPR
as key therapies for a successful outcome after out-of-
hospital cardiac arrest (OHCA) [1]. In particular, uninter-
rupted and high-quality chest compressions (CCs) are of
critical importance. The use of automatic mechanical chest
compression devices may provide this and consequently is
increasingly used in the prehospital setting. Although their
use has not shown benefits in survival [2], mechanical de-
vices guarantee high quality CCs and their use is specially
recommended in scenarios where manual CCs are imprac-
tical such as during transport or invasive procedures [3].

Awareness of the patient’s cardiac rhythm provides the
rescuer insight into the hemodynamic status of the patient,
allowing the rescuer to adjust the resuscitation therapy to
the patient’s needs. International guidelines describe treat-
ment pathways based on cardiac rhythm, i.e., defibrilla-
tion attempts for shockable rhythms (ventricular fibrilla-

tion (VF) and tachycardia (VT)), resuming CCs for asys-
tolic rhythms (AS) and suspicion of the return of sponta-
neous circulation (ROSC) with the therapies that this en-
tails for organized rhythms (OR). So there is clearly a need
for OHCA rhythm classification algorithms to guide the
rescuer during resuscitation therapy.

Although many multiclass OHCA rhythm classification
algorithms have been developed during the last decade,
most of them are designed to classify the rhythm during
CC pauses [4, 5]. Unfortunately, interruptions in CCs to
classify the rhythm lead to interrupted perfusion of vital
organs and lower chances of survival [1]. Efforts have been
made to develop accurate OHCA rhythm analysis methods
during CCs, but all of them are focused on manually given
CCs and not in those administered by mechanical devices.
In addition, the majority of these studies only perform bi-
nary classification to discern shockable (VF, VT) and non-
shockable rhythms (AS, OR), and they do not comprise a
multiclass classification for all types of rhythms that may
be present during an OHCA episode. The only study which
comprises a multiclass rhythm analysis during manual CCs
was performed by Isasi et al. [6]. This algorithm is com-
posed of an adaptive filter that removes the artifacts in-
duced by the CCs in the ECG, followed by a machine
learning algorithm which uses several discriminative pa-
rameters extracted from the filtered ECG to perform the
classification.

The aim of this study is to develop the first multiclass
OHCA rhythm analysis algorithm during CCs provided
by a mechanical device. This algorithm comprises an
adaptive filter to remove the artifact caused by mechani-
cal CCs from the ECG and a classification stage based on
a Random Forest (RF) classifier to perform the multiclass
rhythm classification between shockable (VF, VT), AS and
OR rhythms.

2. Materials and methods

2.1. Dataset

The database used in the present study was extracted
from the randomized controlled Circulation Improving Re-
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Figure 1. An example of a dataset segment corresponding to a patient with an organized rhythm. From top to bottom:
the corrupted ECG, scor(n), the thoracic impedance (TI), and the filtered ECG, sfilt(n), after the removal of the estimated
CPR artefact. In the first 6 s there is no artefact and the underlying OR is visible. Filtering, sfilt(n), reveals the underlying
rhythm of the patient in the artefacted interval, last 16 s. The TI shows a fluctuation correlated with each CC applied by the
AutoPulse device and was therefore used to identify mechanical CC intervals. Both in the fluctuations of the TI and in the
interference induced by the CCs in scor(n), can be observed that mechanical CCs have a fixed rate of 80 min−1.

suscitation Care (CIRC) trial conducted between March
2009 and January 2011 by three emergency services in
the United States and two services in Europe [7]. The
aim of this study was to compare the effectiveness of the
automated load distributing band (LDB, AutoPulse me-
chanical device) CPR with high quality manual CPR in
terms of survival. The AutoPulse device provides CCs
in a fixed position and a constant rate of 80 min−1 (f0 =
1.33Hz). Anonymized waveform data from the Lifepak 12
and 15 monitor-defibrillators (Physio-Control, Redmond,
WA, USA) was exported to Matlab (MathWorks Inc., Nat-
ick, MA) with a sampling period of Ts = 4ms. The data
included the ECG and thoracic impedance (TI) signals to-
gether with the compression instants (see ti in Figure 1)
detected by the Code Stat data review software.

The use of the AutoPulse device was identified when
the compression rate stabilized at the device’s fixed rate
of 80 min−1 for at least 16 s (see last 16 s in Figure 1).
Then, 22 s signal segments were automatically extracted
following these criteria: unique rhythm type in the entire
segment, and an interval of 16 s with AutoPulse CCs fol-
lowed or preceded by a 6 s without CCs (see Figure 1).
The intervals during CCs were used to develop the OHCA
rhythm classification algorithm, whereas the artifact-free
intervals were used to annotate the underlying rhythm. Fi-
nal database consits of 5813 segments extracted from 880
OHCA patients which include 1616 AS, 3043 OR and
1116 shockable (Sh) rhythms.

2.2. Filtering the CPR artefact

The CPR artefact was modeled as a quasi-periodic in-
terference using a Fourier series truncated to N harmonics
and locked to the fundamental frequency of the AutoPulse
device, f0:

scpr(n) =

N∑
k=1

ak(n) cos(k2πf0nTs)+ (1)

bk(n) sin(k2πf0nTs)

The time-varying in-phase, ak(n), and quadrature,
bk(n), coefficients were adaptively estimated using the Re-
cursive Least Squares (RLS) algorithm to minimize the er-
ror between the corrupt ECG and the estimated artefact
at the harmonics of f0 [6]. The underlying/filtered ECG,
sfilt(n), was then obtained by substracting the estimated ar-
tifact from the corrupted ECG, scor(n). The RLS solution
has only one hyperparameter, the forgetting factor (λ).

2.3. ECG preprocessing

The ECG signal was denoised using a method based on
stationary wavelet transform. First, the ECG was decom-
posed in 8 levels of detail coefficients (d1,ecg-d8,ecg) using a
Daubechies 2 mother wavelet. Then, the universal thresh-
old was calculated as follows:

γ = σ
√

2ln(N) (2)
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where N is the length of the signal and σ is calculated as:

σ =
Median{|d1,ecg|}

0.6745
(3)

Soft thresholding was applied to the detail coefficients
and the denoised ECG signal (secg) was reconstructed us-
ing d3,ecg-d8,ecg coefficients, which corresponds to 0.49 –
31.5 Hz band approximately.

2.4. Feature engineering

A total of 83 features were extracted from different do-
mains, details can be found in [5, 8, 9]:
• Time domain: x1, x2, bCP, count1, count2, count3,
the number of QRS-like peaks (Npeak), vFleak, Expmod,
TCSC and MAV for secg.
• Spectral domain: bWT, A1, A2, A3, x3, x4 and x5 for
secg.
• Complexity analysis: Sample Entropy for secg and
d3,ecg-d8,ecg; HILB, Frqbin, CM and Kurtosis (Kurt) of a
binary signal extracted from the ECG for secg.
• Statistical analysis: interquartile range and first quartile
for d3,ecg-d8,ecg; skewness and kurtosis for secg and d3,ecg-
d8,ecg; mean and standard deviation for |d3,ecg|-|d8,ecg|,
|secg| and their first difference signals.

2.5. Rhythm classification algorithm

All the features were used to train and evaluate a Ran-
dom Forest (RF) classifier with 300 trees. In order to ad-
dress class imabalance, each tree was trained using the
same number of observations per class by oversampling
the minority classes. Besides, the splitting of each tree
was stopped when the number of observation was lower
than 15 in the node.

2.6. Evaluation

The RF model was trained and evaluated using patient-
wise 10-fold cross-validation. The algorithm was evalu-
ated in terms of sensitivity (Se) per class, arithmetic mean
between all sensitivities (unweighted mean of sensitivities,
UMS), F1-score per class and mean of F1-scores. Besides,
specificity (Sp) for Sh rhythms was computed by joining
AS and OR classes as non-shockable rhythms. This metric
was computed because the AHA requires a minimum Se
of 90% and a Sp of 95% for shock advice algorithms.

3. Results

Figure 2 shows the cumulative confusion matrix using
10-fold cross-validation, λ = 0.9902 and N = 50. The
UMS was 84.3% and mean F1-score was 83.4%. The
Se and F1 scores per class were 81.9%/80.1%/91.0% and

UMS:84.3%, F1:83.4%

1323

491

24

280

2436

80

13

116

1050

AS OR Sh
Predicted Class

AS

OR

Sh

La
be

l

Figure 2. Cumulative confusion matrix using 10-fold
cross-validation.

76.6%/83.4%/90.0% for AS/OR/Sh, respectively. It can be
observed that most of the errors come from the discrimi-
nation between AS and OR classes, both non-shockable
rhythms. However, AHA requirements are still met, since
for Sh class, Se was 91.0% (> 90%) and Sp 97.2% (>
95%).

Figure 3 shows the performance metrics in terms of λ for
different values of N . A maximum for UMS and mean F1
can be observed for λ = 0.9902 and N = 50. Besides, for
λ < 0.988 Se for Sh class began to decrease, and keeping
this value around the maximum was important to ensure a
Se above 90% for Sh class.

4. Conclusion

An algorithm to discriminate between three different
ECG rhythms during ongoing mechanical chest compres-
sions using AutoPulse device was proposed. The algo-
rithm could be implemented and may help to improve
survival rates during OHCA, allowing continuous rhythm
analysis and avoiding pauses to provide CCs.
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Figure 3. Sensitivities (Se) and F1-scores per class, unweighted mean of Se (UMS) and mean F1 in terms of the forgetting
factor (λ) for different values of N .
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